Kamrad.ru

Go Back   Kamrad.ru > Официальные форумы проектов > S.T.A.L.K.E.R: Shadow of Chernobyl

View Poll Results: Нужна ли возможность стрелять из оружия и кидать гранаты за спину?
Да, конечно нужна! 15 26.79%
Да, но с дополнениями… (пишем)! 8 14.29%
Нет, не нужна! 33 58.93%
Voters: 56. You may not vote on this poll

Reply
 
Thread Tools Display Modes
Old 26-12-2005, 14:42   #1
Basil
Камрад
 
Join Date: мар 2003
Location: Томск
Сообщений: 1,205
Geen
Хочется спросить, ты глобус видел? На котором нанесены линии широты и долготы? Раскрась точки пересечения этих линий ярким красным цветом, а сами линии закрась. И просто посмотри - где этих точек на глобусе будет больше.
На рисунке, приведённом Слонярой, действительно изображён “глобус”. Но такое распределение точек не имеет ничего общего с равномерным распределением по поверхности сферы. Равномерное распределение предполагает равенство расстояний от точки до точки для любой точки на поверхности сферы. Ни о каком сосредоточении точек речи быть не может. Это есть “самый идеальный” случай для гранаты.

Slonyara
работаю я инженером-проектировщиком
Я не ставил под сомнение качество твоих профессиональных знаний.


Maklay
Кстати, в ролике про оружие видно(сли покадрово смотреть), как осколок бьёт в поперечную балку…
Действительно стало интересно, как в игре рассчитывается разлёт осколков и их поражающая способность.
Basil is offline   [Ответить с цитированием]
Old 26-12-2005, 16:54   #2
Slonyara
Камрад
 
Join Date: мая 2004
Сообщений: 37
Basil вот всё споришь, а ведь не прав Пробую (последний раз) объяснить. Вот цитата автора:"Если всю полусферу в 180 градусов принять за 100%, то полградуса составит 0.27%. Если принять 135 осколков за 100%, то при равномерном распределении осколков по сфере поражения в пояс поражения попадет 0.27% осколков.". Имеем 0.27% осколков, но это кол-во, ещё раз подумай сам, не от кол-ва осколков по площади полушара, автор неверно перещёл к расчёту в плоскости, он ушёл от объёма, почему ты этого не видишь в его рассуждениях?
А далее уже и получается, что если считать не в объёме, а в плоскости, то распределение осколков будет именно таким, как я изображал.
На рисунке, приведённом Слонярой, действительно изображён “глобус”. Но такое распределение точек не имеет ничего общего с равномерным распределением по поверхности сферы. Равномерное распределение предполагает равенство расстояний от точки до точки для любой точки на поверхности сферы. Ни о каком сосредоточении точек речи быть не может. Это есть “самый идеальный” случай для гранаты.
Ну вот, сам видишь, что не имеет ни чего общего с равномерным распределением, осталось тебе только понять, что автор именно так и рапределил, но он военный, ему простительно .
Ну ещё для пуще убедительности:
-площадь полусферы
S=2*Pi*R^2=2*3.14*200^2=251327 м.кв.
-площадь кругового сектора в 0.5 град приближенно
S=Pi^2*R^2*a(град.)/90=3,14^2*200^2*0.5/90=2193 м.кв.
Имеем: 2193/251327*100%=0,87% осколков попадёт в этот угол.
Ширина человека b~0.5 м., имеем b/(2*Pi*R)*100%=0.5/(2*3.14*200)*100%=0.04% от 0,87% = 0,035% процентов
0,00035*135=0,047 осколка.
Был трудный день, может я тоже ошибся?

Last edited by Slonyara; 26-12-2005 at 17:31.
Slonyara is offline   [Ответить с цитированием]
Old 26-12-2005, 17:40   #3
Basil
Камрад
 
Join Date: мар 2003
Location: Томск
Сообщений: 1,205
Slonyara
Градусы и распределение точек по поверхности - разные вещи. Почему ты всё в кучу мешаешь?

Имеем 0.27% осколков, но это кол-во, ещё раз подумай сам, не от кол-ва осколков по площади полушара
Что значит "от кол-ва осколков по площади полушара"?

0,27 % - это процент осколков от общего количества осколков, образованных от "идеального взрыва" гранаты, разделенное на 2 (так как половина осколков уйдёт в землю).

...автор именно так и рапределил...
Приведи доказательство, что автор распределил осколки подобно распределению на приведённом тобой рисунке.

но он военный, ему простительно
Нечего ему ещё прощать.
Basil is offline   [Ответить с цитированием]
Old 26-12-2005, 20:00   #4
Basil
Камрад
 
Join Date: мар 2003
Location: Томск
Сообщений: 1,205
Slonyara
Похоже, у автора в расчетах действительно есть ошибка. Но не в самом подходе к решению задачи, а именно в простой арифметике:
"Если принять 135 осколков за 100%, то при равномерном распределении осколков по сфере поражения в пояс поражения попадет 0.27% осколков. Значит в область пояса поражения попадет 0.19 осколка..."
Не 0.19, а 0.3645 в этом случае получится. А 0.19 - это 0.14 % от 135 осколков. Ошибка (считаю, невнимательность) в расчетах получилась в 2 раза.

Подходы разные (считать по площади сферы или методу, предложенному автором), но результаты должны получиться сходные: 0,000XXXX осколка будет и в том и в другом случае.
Basil is offline   [Ответить с цитированием]
Old 27-12-2005, 00:22   #5
Geen
Камрад
 
Join Date: мар 2003
Сообщений: 738
Про арифметику я уже упоминал

Приведи доказательство, что автор распределил осколки подобно распределению на приведённом тобой рисунке.
Он считал исходя из этого распределния. Ведь он считает, что все градусы их 180 равнозначны по количеству осколков. (Ещё раз, почему 180? Ведь в 180 градусов "верхней полусферы" его "пояс поражения" попадает два раза!! 90 градусов надо брать - ещё одна ошибка в два раза). Иначе, нельзя брать пропорцию.
Возьмём тот же глобус. Пусть он будет радиусом 1м. Пусть ось распологается вертикально (экватор тогда соответствует горизонту). Меридиан "северного полушария" этого глобуса как раз и есть эти 180 градусов.
Возьмём полоску шириной 1мм на экваторе. Под каким углом она видна из центра? Какова её площадь?
Возьмём теперь полоску шириной 1мм на широте 60 градусов. Под каким углом она видна из центра? Под тем же самым, что и полоска на экваторе. Какова её площадь? В два раза меньше, чем площадь полоски на экваторе! МОжно ли считать 60-ый градус широты равнозначным 0-му? Нет. Поэтому неправомерно относить угол, под которым видны эти полоски к "углу всего меридиана" (то есть, к его длине, что то же самое).
Возьмём полоску шириной 1мм на полюсе. Под каким углом она видна из центра? Да под тем же самым. Какова её площадь? В 2000 (две тысячи) раз меньше, чем площадь полоски на экваторе! Если считать, что в угол, под которым видна эта полоска из центра летит то же самое количество осколков, что и в полоску на экваторе, то это будет означать, что в этой полоске точки стоят в 2000 раз плотнее, чем в полоске на экваторе!

Именно в этом главная ошибка автора!
Geen is offline   [Ответить с цитированием]
Old 27-12-2005, 00:48   #6
Davinci
Камрад
 
Join Date: апр 2004
Сообщений: 57
Вот так на почве Сталкера у людей вновь просыпается любовь к полузабытым школьным дисциплинам. А еще говорят, что от игр нет никакой пользы.
Davinci is offline   [Ответить с цитированием]
Old 27-12-2005, 02:44   #7
Geen
Камрад
 
Join Date: мар 2003
Сообщений: 738
На самом деле, у автора есть ещё одна ошибка (правда её можно отнести к выбору модели, а не к рассчётам).
За исключением немногих точек, если учитывать "баллистику", к цели ведут две траектории - настильная и навесная. Поэтому, цели может достичь ещё больше осколков
Geen is offline   [Ответить с цитированием]
Old 27-12-2005, 10:54   #8
Basil
Камрад
 
Join Date: мар 2003
Location: Томск
Сообщений: 1,205
Geen
почему 180? Ведь в 180 градусов "верхней полусферы" его "пояс поражения" попадает два раза!! 90 градусов надо брать - ещё одна ошибка в два раза). Иначе, нельзя брать пропорцию.
Тогда придётся уже брать не 135 осколков, а ровно в 2 раза меньше – то на то и выйдет в любом случае.

Если считать, что в угол, под которым видна эта полоска из центра летит то же самое количество осколков, что и в полоску на экваторе, то это будет означать, что в этой полоске точки стоят в 2000 раз плотнее, чем в полоске на экваторе!
Причём здесь “видна эта полоска”, когда мы с самого начала условились, что распределение равномерное – расстояние от точки до точки одинаковое? Глобус с распределением по широтам и долготам здесь вообще не причём. Ещё раз отмечаю, что ни о каком сосредоточении точек на поверхности сферы в определённом месте речи быть не может.

За исключением немногих точек, если учитывать "баллистику", к цели ведут две траектории - настильная и навесная. Поэтому, цели может достичь ещё больше осколков
У меня сложилось впечатление, что ты только одну часть задачи всегда рассматриваешь. В комплексе надо подходить.
Цитирую автора:
“Вы скажете, что осколки летят по баллистической траектории и наибольшую дальность будут иметь те, которые вылетят с места взрыва под углом 45 градусов?

Согласен. В таком случае, давайте посчитаем углы вылета для осколков, которые попадут в ноги бойца и которые попадут в его голову. И в этом случае разница между этими углами составит на дальности 200 метров 0.5 градуса.”
Иными словами, если брать во внимание баллистическую траекторию, то некоторое количество осколков, вылетающих под бОльшим углом, чем 0.5 градуса, действительно может попасть в голову, но такое же количество осколков, вылетающих под углом меньше 0.5 градуса, может, просто-напросто, врыться в землю перед ногами человека. Здесь снова то на то и выходит.

Вообще же, при расчётах по двум методам у меня получилась вероятность попадания 2-5 осколков из 10000 (десяти тысяч) взрывов (иначе - 2-5 осколков от общего количества осколков, образованных десятью тысячами взрывов). У автора была ошибка в арифметике.

Если можешь, приведи свой способ расчёта. Сравним.

Last edited by Basil; 27-12-2005 at 11:26.
Basil is offline   [Ответить с цитированием]
Old 27-12-2005, 12:32   #9
Geen
Камрад
 
Join Date: мар 2003
Сообщений: 738
когда мы с самого начала условились, что распределение равномерное – расстояние от точки до точки одинаковое? Глобус с распределением по широтам и долготам здесь вообще не причём. Ещё раз отмечаю, что ни о каком сосредоточении точек на поверхности сферы в определённом месте речи быть не может.

Ещё раз. Брать отношение полуградуса (угол по вертикали, под которым видна ростовая фигура с расстояния 200 м) к 180 градусам "меридиана" верхней полусферы, и на этом основании вычислять вероятность попадания осколков в "пояс поражения" можно только в том случае, если в любой "пояс" того же углового размера на любом возвышении над горизонтом летит одинаковое количество осколков!
Если это не так (вроде с этим уже все согласились), то брать отношение нельзя - оно даст в принципе не верный результат.

Для примера. Давайте поставим ростовую фигуру на пьедестал высотой 50м (но расстояние до фигуры от гранаты сохраним 200м). Без учёта баллистики, изменится ли вероятность попадания осколков в эту фигуру?
Предлагаю представить рассчёт через "пояс поражения".

А свой способ я уже приводил - через отношение площади фигуры (точнее её "изоцентральной" проекции на сферу) к площади самой сферы - так называемый телесный угол, под которым видна фигура из точки взрыва.
Geen is offline   [Ответить с цитированием]
Old 28-12-2005, 09:35   #10
Slonyara
Камрад
 
Join Date: мая 2004
Сообщений: 37
Ширина человека b~0.5 м., имеем b/(2*Pi*R)*100%=0.5/(2*3.14*200)*100%=0.04% от 0,87% = 0,035% процентов
0,00035*135=0,047 осколка.
точно, ошибся всётаки я, пару ноликов добавить надо 0,0000035*135=0,00047 осколка, у автора статьи 0.0000758, ошибка в шесть раз, именно из-за неправильного распределения осколков, ошибка про два раза по 0,5 град. компенсируется ошибкой про 0,27%.
Basil а ты случайно не военный ?
Geen А свой способ я уже приводил - через отношение площади фигуры (точнее её "изоцентральной" проекции на сферу) к площади самой сферы - так называемый телесный угол, под которым видна фигура из точки взрыва.
Что-то я не понял причём тут телесный угол, и где ты высчитывал изоцентральную проекцию (слово-то какое ) ?
Slonyara is offline   [Ответить с цитированием]
Old 28-12-2005, 09:47   #11
cpcat
Модератор
Сталкер
 
cpcat's Avatar
 
Join Date: апр 2002
Сообщений: 2,202
У вас ещё головы не опухли от этой темы?
cpcat is offline   Дневник [Ответить с цитированием]
Old 28-12-2005, 10:32   #12
Geen
Камрад
 
Join Date: мар 2003
Сообщений: 738
слово-то какое )
народу нравится

где ты высчитывал изоцентральную проекцию
На расстоянии 200м это практически тоже самое что и "фронтальная" проекция. На расстоянии 2м - погрешность уже будет заметной. Но это я так, пальцы раскинул - погрешность выбранной модели, конечно, значительно больше этих процентов

Что-то я не понял причём тут телесный угол
Пардон, оговорился в 4 пи раз - телесный угол это отношение площади фигуры на сфере к квадрату радиуса этой сферы (так же как плоский угол есть отношение длины дуги к радиусу).

У вас ещё головы не опухли от этой темы?
Только не надо никуда переносить, лучше уж просто замодерировать - эффект тот же (а то унёс диалоги про Теслу и тема заглохла )
Geen is offline   [Ответить с цитированием]
Old 28-12-2005, 10:49   #13
cpcat
Модератор
Сталкер
 
cpcat's Avatar
 
Join Date: апр 2002
Сообщений: 2,202
Я и не собирался. Просто читаю у себя в почте все эти баллистические мегарасчёты и гадаю, когда ж вам надоест уже
cpcat is offline   Дневник [Ответить с цитированием]
Old 28-12-2005, 11:07   #14
Geen
Камрад
 
Join Date: мар 2003
Сообщений: 738
все эти баллистические мегарасчёты и гадаю, когда ж вам надоест уже
Так мы до баллистики то ещё и не добрались
Geen is offline   [Ответить с цитированием]
Old 28-12-2005, 19:28   #15
Basil
Камрад
 
Join Date: мар 2003
Location: Томск
Сообщений: 1,205
Slonyara
ты случайно не военный?
Это военная тайна. СавершенНА сикретНА.
Basil is offline   [Ответить с цитированием]
Old 28-12-2005, 22:21   #16
NightVz
Камрад
 
NightVz's Avatar
 
Join Date: июл 2004
Location: г. Мариуполь, Украина
Сообщений: 652
Уууу.... Ребята, разрабы могли бы гордиться взлелеянным поколением математических самородков, в самом деле...
Народ, ну подкиньте какую-нибудь действительно ажиотажную тему! Где, в конце концов, главный специалист - камрад oblomoff? :
NightVz is offline   [Ответить с цитированием]
Old 29-12-2005, 00:28   #17
Don Reba
Камрад
 
Don Reba's Avatar
 
Join Date: фев 2003
Location: Арканар
Сообщений: 1,331
Может ещё про сферы поговорим? Тема-то себя далеко не исчерпала.
Don Reba is offline   [Ответить с цитированием]
Old 29-12-2005, 09:01   #18
Slonyara
Камрад
 
Join Date: мая 2004
Сообщений: 37
Предлагаю обсудить влияние на вероятность поражения осколками, расположенных в близи гравитационных аномалий (по закону обратной пропорциональности квадрату расстояния), а также переносу ко времени действия игры северного магнитного полюса в Cибирь и всемирного потепления
NightVz Где, в конце концов, главный специалист - камрад oblomoff? А позвольте спросить, где камрад Blackbird, ставший инициатором геометрических баталий?
Slonyara is offline   [Ответить с цитированием]
Old 30-12-2005, 18:54   #19
oblomoff
Камрад
 
oblomoff's Avatar
 
Join Date: фев 2005
Location: piter
Сообщений: 684
Slonyara

Под Нг буду взрывать "петарды". Кто хочет могу выслать видео этого мероприятния!

тута я тута! за чем дело стало?
oblomoff is offline   [Ответить с цитированием]
Old 02-01-2006, 20:51   #20
oblomoff
Камрад
 
oblomoff's Avatar
 
Join Date: фев 2005
Location: piter
Сообщений: 684
К сожалению зафотать удалось только ямки да и то только оставшиеся от взрыва маленьких петард..(((
Потому что видео фотик в темноте не потянул а потом сели на морозе батарейки ((((
Ну вот ямки..."Петарды" были размером с треть пишушей ручки длиной и толщиной с фломастер.
Attached Thumbnails
Click image for larger version

Name:	resize of phot0073.jpg‎
Views:	1731
Size:	62.8 KB
ID:	15903  
oblomoff is offline   [Ответить с цитированием]
Old 02-01-2006, 20:52   #21
oblomoff
Камрад
 
oblomoff's Avatar
 
Join Date: фев 2005
Location: piter
Сообщений: 684
от этой "петарды" я отбежал только на 10 метров и потом ходил немного оглушённый.
Attached Thumbnails
Click image for larger version

Name:	resize of phot0071.jpg‎
Views:	1690
Size:	67.6 KB
ID:	15904  
oblomoff is offline   [Ответить с цитированием]
Old 02-01-2006, 20:55   #22
oblomoff
Камрад
 
oblomoff's Avatar
 
Join Date: фев 2005
Location: piter
Сообщений: 684
А ещё один чел выстрелил мне в спину салютом и прожёг куртку. После чего начал петь и предложил обмотать "петарды" шариками подшипников, чтобы "замочить этих козлов"(каких он не сказал)...всвязи с чем был послан далеко и надолго.

так вот к чему это я ! Меня оглушило в 10(!) "метрах от петарды" и думаю в 20 бы тоже оглушило....максимальная задержка на детонаторе гранаты это 3.5 секунды кажется...так какой смысл бросать гранату назад? Далеко потом убежишь?
Attached Thumbnails
Click image for larger version

Name:	resize of phot0072.jpg‎
Views:	1654
Size:	70.4 KB
ID:	15905  

Last edited by oblomoff; 03-01-2006 at 00:49.
oblomoff is offline   [Ответить с цитированием]
Old 04-01-2006, 22:21   #23
KON@N
Banned
 
KON@N's Avatar
 
Join Date: дек 2004
Location: YO-burg !!!
Сообщений: 1,167
oblomoff Какого производителя колёса ???
KON@N is offline   [Ответить с цитированием]
Old 05-01-2006, 05:41   #24
Maklay
Камрад
 
Maklay's Avatar
 
Join Date: мар 2003
Location: Papua, New Guinea
Сообщений: 1,185
Slonyara
северного магнитного полюса в Cибирь
А Сибирь - это откуда и до куда? Если не секрет. А то вот все про сибирь горазды, а что такое Сибирь? Да и Сибирь ли, вообще?


__________________

"В ставке Гитлера все малохольные"
Макарыч
Maklay is offline   [Ответить с цитированием]
Old 05-01-2006, 12:21   #25
oblomoff
Камрад
 
oblomoff's Avatar
 
Join Date: фев 2005
Location: piter
Сообщений: 684
KON@N

Всё натуральное! Обижаешь! )))
Посчитал кстати эквивалент наших "петард" тротилу...всего порядка 100гр...
oblomoff is offline   [Ответить с цитированием]
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +3. The time now is 02:18.


Powered by vBulletin® Version 3.8.12 by vBS
Copyright ©2000 - 2025, vBulletin Solutions Inc.
Любое использование материалов сайта
возможно только с разрешения его администрации.